
L

REPORT DOCUMENTATION PAGE __,,. ,,.,,
, i a " - 0 .W , .. _ I 6 W g w mm.-,-- """ '" h I ,'m. wIi Us Ngm. ,m

Will do lot upwom O Flop 121 rc =4 w IM 12.AfIftm.
l•AGENCY USE ONLY (L,,, ,,w*) 2. REPORT DATE S. REPORT TYPE AND DATES COVERED

10 MAY 89 Final Report

4TITLE AND SUBTITLE 5. FUNDDNG NUMERS

A Program Manager's Guide to Generic Architectures C- F33600-87-D-0337

O.AUT4OR(S)

c Richard B. Quanrud

7. PERFORMING ORGANIZATION NhME(S) AND ADORESS(ES) 6. PERFORMING ORGANIZATIONREPORT" NUMBER
SofTech, Inc.
3100 Presidential Drive 3451-4-214/1
Dayton, OH

9. SPONSORING iONITCIRNG AGENCY NAME(S) AND ADRESS(ES) 10. SPONSORINGWMONITORING AGENCY
Aeronautical Systems Division REPORT NUMBER
SCOL/ Building 676
Area B
Wright Patterson AFB, OH 45433

11. SUPPLMEhNTARY NOTES

12a. DISTHIBUTIONAVAILABILI"Y STATEMENT 12b. DISTRIBUTION CODE

UNLIMITED

13. ABSTRACT (fdAxmw 200 wods)

This report is an introduction to the use of generic architectures for managers of DoD
software acquisition programs. Generic architectures are an approach to the develop-
ment and use of reusable software components. They extend the level of software
reuse within a system through the development of reusable components designed for use
in a specific, family of applications and within a specific design context. As such,
they may be used to support functions that are not easily supported with more
traditional reusable software libraries. D 4 0c

ELECTE

114. SUBJECT TERMS I .NUMBER OF S

Reusable Software, Command & Contral Software, Ada 30

T7.SE RITYCLASSIFICATION 8. SECURI CLASSICAT 0 SECURITY ASIFIC 20. LIMITATION OF ABSTRACTOREOTOF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-28o-5500 Standard Form 298, (Rev, 2-89)
Pa. by ANSI S. M
2901



GENERAL INSTRUCTIONS FOR COMPLETING ,F 298
The Report Documentation Page (RDP) Is used in announcing and cataloging reportc. It is important
that this information be consistent with the re: of the report, particularly the cove7 and title page.
Instructions for filling in each block of trie form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Destrihitinn/AvailaWity Statement
Denotes public avalability or limitations. Cite

Block 2. erD Full publication date any availability to the public. Enter additional
including day, mon'", and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must citi €o: least the year. (e.g. NOFORN, REL, ITAR).

Block 3. Type of Rep-n and Datc. Covered
State whether report is interim, final, etc. If
applicable, enter in:-lusive report dates (e.g. 10 DOD See DoDD 5230.2 , "Distribution
Jun 87 - 30 Jun 88). Statements on TechnicalDocuments.'

Block 4. TitL, and .Subtitle. A title is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHE? 2200.2.
meaningful and complete informat;on. When a 14TIS - Leave blank.
report is prepared in more than one volume,
repea: the primary title, add volume number,
and include subtitle for the specific volume. On Blnck 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank.

Block 5. Funding Numbers To include contract DOE - DOE - Enter DOE distribution categories
and grant numbers; may include program from the Standard Distribution for
element number(s), project number(s), task Unclassified Scientific and Technical
number(s), and work unit number(s). Use the Reports.tol:owing labels: NASA - NASA - Leave blank.NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA- Task Block 13. Abstract Include a brief (',aximum
PE - Program WU- Work Unit 200 words) factual summary of the mo.tsionificant information contained in the. report.
Block 6.Author(-,. Name(s) of person(s)
responsible fo- writing the report, performing Block 14. SubJect Terms. Keyworcs or phrases
the research, or credited with the content of the identifying major subjects in :ne report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pa,-. Enter the total

Block 7. Performin Orani7_pljnNamejS)aa number of pages.
Aidr Self -explanatory. Block 16. Eri _P_. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter tne unique alphanumeric report
number(s) assigned by the organization Fiocks 17. - 19. Security Classifications.
performing the report. Self-explanatoy. Enter U.S. Security

Block 9. Sponsoring/Monitoring Agency Classification in accordance with U.S. Security
Name(s) and Address(es). Self-explanatory. Regulations (i.e., UNCLASSIFIED). If form

contains classified information, stamp
Block 10. S;0noring/Monitoring Agency classification on the top and bottom of the page.
Report Number. (If known)

Block 11. Supnlamentary Notes Enter Block 20. Limtation of Abstract. This block
information no-, included elsewhere such as: must be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To abstract. Enter either UL (unlimited) or SAR
be published in.... When a report is revised, (same as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Stanc rd Form 298 Back (Rev. 2-89)



CECOM le A.C

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY

Subject: A PROGRAM MANAGER'S GUIDE TO
GENERIC ARCHITECTURES

Final Report

CIN: C04-029NN-0001-00

10 1AY 1989



A PROGRAM MANAGER'S GUIDE TO GENERIC ARCHITECTURES:

Final Report

PREPARED FOR:
U S ARMY CECOM
CENTER FOR SOFTWARE ENGINEERING
AMSEL-RD-SE-AST
FORT MONMOUTH, NJ 07703

PREPARED BY: So-Tech Inc.
460 Totten Pond Road
Waltham, MA 02254

l

i t i

[I tistribution/

Availability Codes
10 MAY 1989 Avail and/or

IDi;t Special



Final Report, May 10, 1989

Copyright @SofTech, Inc., May 1989

This material may be reproduced by or for the U.S. Government pursuant to

the copyright license under the clause at DFARS 252.227-7013 (April 1988).

Printed in the U.S.A.

The reproduction of this material is strictly prohibited. For copy informa-
tion, contact the U.S. Army CECOM, Ft. Monmouth, NJ.

The information in this document is subject to change without notice.

Apple and Macintosh are traoemarks of Apple Computer, Inc.

ScfTech, Inc.
460 Totten Pond Road
Waltham, MA 02154-1960

iv



TABLE OF CONTENTS

Section Page

A PROGRAM MANAGER'S GUIDE TO GENERIC ARCHITECTURE vii

1 REUSABLE COMPONENT LIBRARIES I

2 GENERIC ARCHITECTURES 3

3 RELATIONSHIP TO LIBRARIES OF REUSABLE COMPONENTS 6

4 ADA SUPPORT FOR GENERIC ARCHITECTURES 8

4.1 Ada Packages as Reusable Components 8

4.2 Non-Intrusive Modifications to
Reusable Components 9

4.3 Object-Oriented Development 9

5 BENEFITS 11

6 DEVELOPNENT OF A GENERIC ARCHITECTURE 13

6.1 Requirements Analysis 13

6.2 Design 14

6.3 Coding and Testing 15

7 ACQUISITION CONSIDERATIONS 16

7.1 Project Domain 16

7.2 Contractor Selection 17

7.3 Development 18

SUMMARY AND CONCLUSIONS 20

9 FURTHER READING 22

v



LIST OF FIGURES

Figure Paoe

I The Reuse of Components in Applications with
Different Designs 2

2 The Reuse of Components in Systems with a
Common Design 3

3 A Workstation Network Applications Environment 5

vi



A PROGRAM MANAGER'S GUIDE TO GENERIC ARCHITECTURES

The reuse of existing software components can significantly improve

productivity on software development projects. A generic architecture

provides a way to increase the level of reuse beyond that possible with

traditional approaches.

'Typically, reusable components are available from software libraries

that provide them for use on a wide variety of applications. However,

with a generic architecture, the components are developed for use in the

applications of a specific project or organization and are designed to

meet the specific requirements of those applications. This change in

focus makes it possible to take advantage of similarities in the

requirements and design of those applications so as to develop reusable

components for operations that are difficult to support with more general

purpose library components.

In general, the reuse of software components contributes to software

productivity by reducing the number of lines of new code that must be

designed, coded, tested, and maintained. However, the benefits to be

derived from a generic architecture are not limited to greater productiv-

ity, but include greater reliability, enhanced interoperability, improved

operator performance, and lower training costs as well. Generic archi-

tectures also make software more adaptable to changing requirements,

environments, and technology and provide strong support for the rapid

prototyping of related applications.

vii



Section I

REUSABLE COMPONENT LIBRARIES

The reuse of software components is common in most projects. It

may be as simple as the exchange of source code among programmers who

recognize common requirements and opportunities for code reuse. However,

in such cases, the code is often maintained separately in each applica-

tion in which it is used. Although some time is saved in the design and

coding of the component, the other benefits of common testing and

maintenance are lost.

A more organized approach is to place reusable components in a

common library. Each component is tested and documented before it enters

the library. Copies of the code and documentation are distributed to

users on request. Problems with a component are reported to the library

where they can be fixed and the changes made available to all users.

Reusable component libraries typically serve a number of projects

in an effort to maximize the opportunities for the reuse of the compo-

nents. Libraries also collect components from a variety of sources to

increase the likelihood that they will have the components needec to meet

the specific requirements of their client projects. At some point, the

number of components may become large enough to require the use of classi-

fication systems and retrieval software to aid in the identification of

the most appropriate component for a particular use.

The typical library component is designed to perform some well

defined function that is likely to be required in a number of different

software systems. They are particularly useful when they encapsulate the

expertise required to perform a complex operation that would be difficult

or expensive to program. Device drivers, window managers, and complex

mathematical functions are good examples. They can include major subsys-

tems which provide a significant part of the software environment in which

an application program will operate. In most cases, they are designed to

be independent of the design of the application in which they are used.



This element of design independence is illustrated in Figure 1.

The figure provides a conceptual model of three applications, of very

different design, which share several reusable components. Letters have

been assigned to the components for identification. A different set of

components has been used in each application and the components have no

direct interfaces with each other. The interface code that invokes the

operations of each of the reusable components is generally not reusable

and is developed as new code in each of the applications.

A0 S

Figure 1. The Reuse of Components in Applications
with Different Designs

2



Section 2

GENERIC ARCHITECTURES

In the development of related applications, design independence is

not the central issue. For these applications it is often possible to

use a common high-level design and to develop additional reusable

components that are based on that design. The common design and design-

dependent reusable components are the essential elements of a generic

architecture.

The use of a generic architecture is illustrated in Figure 2. Here

the high-level design of the two applications is the same. Nominally, eaci-

appiication has a similar set of components, and those components have

direct interfaces with each other. Many of the components can be reused

without change. Differences in the requirements of the two applications

are handled by modifying or replacing only those components affected Ly'

those requirements. In Figure 2, components "C" and "E" are different Jr

the two systems, but they have the same interface with the other

components in both systems. This illustrates the generic architecture

approach to reusable software.

A 

A

D El F D F

Figure 2. The Reuse of Components in Systems with a Common Design

3



A generic architecture provides a high-level design for a family of

related applications and a set of reusable components that are intended

for use in those applications. The use of a common high-level design

allows code that is dependent on that design to be included in the

reusable components. A good example of design-dependent code is code

that is contained in one component and invokes a function contained in

another component. Such a design dependency limits the use of the first

component to designs in which the second component is also used. Accep-

tance of design dependencies allows more of the code of the application

to be included in the reusable components. However, the use of those

components is limited to applications in which the components have the

same design relationship.

Under what circumstances will the designs used in a family of

applications be similar enough to allow the use of a generic architecture?

The answer to this question often depends more on the operating context or

environment of a set of applications than on the applications themselves.

For example, applications that are executed on networked work-

stations, such as those shown in Figure 3, are likely to be good candi-

dates for the use of a generic architecture. This is because those

applications are likely to have a large number of common support require-

ments. These might include support for an interactive dialog with the

user, the ability to print reports, or the ability to send and receive

messages using standard protocols. Although the displays, reports, and

messages will be different for each application, much of the supporting

code required to produce displays, print reports, or format messages may

be the same. Moreover, the basic control mechanisms are likely to be

similar in most of the applications.

It is usually not difficult, in such situations, to place the code

that is truly application specific in components that are separate from

those supporting the more generic elements of an operation. This allows

the application specific components to be replaced or modified without

changing the remaining supporting components.

4



Figure 3. A Workstation Network Applications Environment

The amount of code that can be reused in similar applications can

be surprisingly large. Magnavox was able to reuse 75% of the code

developed for the Army's Advanced Field Artillery Tactical Data System

(AFATOS) on another project, the Elevated Target Acquisition System.

Sof7ech was able to reuse 685 of the code developed for the applications

of the Air Force Rapid Emergency Reconstitution (RAPIER) project across

the nine applications of that project. It has been estimated that over

70% of the code developed for Apple Macintosh applications could be

reused across those applications.

The recent trend toward the procurement of large numbers of commer-

cial desk-top computers and workstations for general use throughout a

command or program has created ideal conditions for the development and

use of generic architectures and for the use of reusable software in

general. Within such an environment, there are likely to be numerous

opportunities to exploit similarities among related applications.



Section 3

RELATIONSHIP TO LIBRARIES OF REUSABLE COMPONENTS

The development of a generic architecture is not an alternative to

the use of a library of software components in the development of

computer software. Instead, it compliments the use of library components

by allowing additional components of an application to become reusable.

The development of a generic architecture should take full advantage of

any components that can be supplied from an existing library.

The important difference between the components that might be

supplied by a library and the additional components that would be

developed for a generic architecture is that library components usually

stand alone. They do not normally depend on operations performed by

other library components although they may require the services of the

underlying operating system.

The additional components developed for a generic architecture

generally do not stand alone. They must operate in the same design

context and in conjunction with other components on which they depend for

support. They can be reused across applications only to the degree that

those applications share a common design.

Any stand-alone components that might be developed for a generic

architecture are good candidates for inclusion in a reusable component

library. The remaining design-dependent components might also be

included, but they raise a number of special problems. The interdepen-

dencies among these components must be clearly identified for the users

of the library so that all of the necessary components are included in

any application in which they are used. It is also useful for a library

to provide some way to identify all of the components that are used in a

given generic architecture so that they can be examined as a group for

possible use in other applications.

Indeed, other projects which have the same operating environment

may be able to reuse a generic architecture. If not, they may be able to

6



adapt large parts of it to a new generic architecture. Existing generic

architectures can also serve as useful examples to later developers. The

latter consideration alone probably justifies their inclusion in

libraries of reusable components.

It may also be desirable to include a generic architecture in a

library for long term maintenance, particularly if it is likely to be

reused, in whole or in part, by other projects.

However, in most cases, the organization that operates a library is

probably not the ideal organization to develop a generic architecture.

The development of a generic architecture requires a fundamentally differ-

ent point of view. The ability to achieve high levels of software reuse

within the applications based on a generic architecture depends to some

degree on resisting the temptation to over-generalize, i.e., to design

the components to meet requirements that go beyond those of the project

that plans to use the architecture. By its nature, a library organiza-

tion tries to make components useful to a wide range of users and is

probably more likely to over-generalize than a project organization.

A generic architecture is inherently project specific. Ideally,

its development should be sponsored by the organization responsible for

the project that will be supported by the architecture. No one else has

adequate information on the requirements of the applications. No one

else is as likely to benefit from its development.

.7



Section 4

ADA SUPPORT FOR GENERIC ARCHITECTURES

The ability to develop an inventory of reusable "software parts"

was a major consideration in the design of the Ada language. It should

not be surprising that Ada provides strong support for generic architec-

tures and for reusable components in general.

Reusable components should be treated as "black boxes" which perform

well defined operations, but keep the details of the implementation of

those operations hidden from the user. The object here is not secrecy,

but rather the ability to use a component without having to be concerned

about the details of its implementation. If this is not the case, it can

be expected that the user will soon modify the component and it will no

longer be reusable. A component is truly reusable only when it can be

used again without changing the program code of the component.

4.1 Ada Packages As Reusable Components

The Ada language is well suited to the development of black box

components. Most of the operations in an Ada program are grouped into

"packages" along with the data used in those operations. A reusable

component in Ada is usually implemented as an Ada package.

The interface to an Ada package is defined in an Ada coded package

"specification". That interface defines the form of all program calls to

the operations of the package as well as any data that may be accessed

from outside the package.

The code that implements the operations of a package is contained

elsewhere in a package "body". Here one would find the code that carries

out the operations defined in the interface specification as well as any

local data that is used within the package.



4.2 Non-Intrusive Modifications To Reusable Components

Ada also has several features which allow the programmer to modify

the operations of a package without changing the program code of the

package. The two most important are "generics" and "separate subunits".

A generic package differs from a normal package in that it allows

selected data and operations in the package to be redefined at the time

that the package is used in a program. The package specification identi-

fies the data and operations that can be changed in this manner. The

remainder of the package is unchanged, and no permanent changes are made

to the program code of the package.

A separate subunit is the implementation of an operation outside of

the package in which it is defined. Its interface is still defined in

the package specification, but its program code is separate from the

package body. In its place, the body contains a statement that indicates

that the code for the operation is contained in a separate subunit. This

means that the program code for that operation can be replaced without

changing tne code of the package body.

Of course, it is always possible to replace a component that cannot

be suitably modified. Indeed, most of the code for the replacement compo-

nent may be taken from the original. The penalty is that the component

is now unique to the application in which it is used and must be

maintained separately as long as it is used.

4.3 Object-Oriented Development

Ada is considered by most authorities to be an "object-oriented"

language. This means that it allows programmers to implement software

components using an object-oriented programming style. An object-

oriented software component contains all of the data used to represent

some real-world object an well as the code for all operations on that

object.

For example, a message might be such an object. An object-oriented

message component or package would contain all of the data required to

9



describe one or more messages. It would also include the program code

for all of the operations that might be performed on messages. Examples

are operations which create, send, receive, and display messages.

Object-oriented development provides a logical basis for grouping

operations and data into components. In the process it reduces the

amount of data that needs to be accessed from other components. This can

substantially reduce the complexity of software systems. It also simpli-

fies the interfaces among components and makes them inherently more

reusable.

It is sometimes argued that Ada is not truly an object-oriented

language because it does not support "inheritance". Inheritance in an

object-oriented programming language allows a new component to "inherit"

all of the data and operations of some existing component. The new

component may contain additional data and operations for the object of

the original component. No changes are made to the original component

and no special provisions need be made in advance to allow its code to be

inherited by a later component. In effect, this allows extensions to a

reusable component without changing the part that is being reused in

other proorams.

This would be a convenient way to modify reusable components in a

generic architecture. However, most of the effect of inheritance can be

achieved through the use of generics and separate subunits.

10



Section 5

BENEFITS

The use of a generic architecture has a number of important

benefits.

The most apparent is the potential for a significant reduction in

both the time and effort required to develop and maintain the applications

which use the architecture. The use of the established, tested design of

the architecture can streamline the design phase in the development of

later applications. For each application, there is less new code to be

developed and less application-unique code to be maintained. The relia-

bility of each application is enhanced through greater reliance on

components that have been used and tested in other applications. The

availability of an existing design and components should also reduce the

time required to develop applications based on the architecture.

However, the benefits to be derived from the use of a generic archi-

tecture are not limited to streamlined development and lower maintenance

costs.

In the workstation network example discussed earlier, the use of

the same components to implement message protocols and other standards

assures a degree of interoperability among the applications that would be

difficult to achieve among independently oeveloped applications.

The use of common support routines in the interactive user inter-

face will produce a common "look and feel" to that interface across

applications. This can reduce training costs and contribute to improved

operator performance. It can also produce a degree of consistency in the

man-machine interface that makes it easier to reassign operators to other

applications which share the same generic architecture.

The need to confine application-dependent code to a limited number

of components tends to make applications based on a generic architecture

more adaptable to requirements which may change from user to user. For

11



example, changes required to adapt a system to different organizations

are likely to be confined to those application-dependent components.

Hardware and operating system dependencies tend to be concentrated

in the reusable components of a generic architecture. This can be an

important advantage when the applications are moved to a new hardware or

software environment. In most cases, modification of the reusable

components containing the hardware dependencies can be done once for all

of the applications using those components. Without a generic architec-

ture, it is more likely that changes would have to be made to a larger

number of application-unique components.

The rapid prototyping of new applications is easier if there is an

available generic architecture for similar applications. The design and

supporting code are already integrated, tested, and in place. Only the

application-specific elements of the prototype need be added. The conven-

ience of such a prototyping "platform" makes it easier to experiment with

different versions of the prototype as the requirements for an applica-

tion are refined.

Finally, the components of a generic architecture are designed to

be adaptable in order to meet the requirements of the different applica-

tions that will use the architecture. This characteristic also makes

them more adaptaole to future changes in requirements or technology.

.12



Section 6

DEVELOPMENT OF A GENERIC ARCHITECTURE

With some small changes in emphasis, the development of a generic

architecture and its applications conforms well to the development proces,

defined by DOD-STD-2167A. The applications covered by the generic archi-

tecture might be identified as separate Computer Program Configuration

Items (CSCIs) in the System/Segment Specification. The generic architec-

ture itself would constitute an additional CSCI.

The use of a generic architecture forces the software developer to

give more attention to requirements analysis and design than with less

coordinated approaches to software development. The level of software

reuse obtained from a generic architecture is highly dependent on the

amount of time and effort given to these critical early phases of the

development effort.

6.1 Requirements Analysis

A thorough analysis of the requirements of a family of applications

will increas- the likelihood that those requirements will be met with

reusable components rather than with application-specific code. Draft
versions of the Software Requirements Specifications (SRSs) should be
completed for each of the applications prior to the development of an SRS

for the generic architecture. The application SRSs can then be analyzed

to identify the common requirements that should be included in the SRS

tor the generic architecture.

This selection of the requirements for the generic architecture may

be more complex than it might appear. Few of the requirements are likely

to be stated in a way which separates the unique requirements of the

individual applications from the more generic support that might be

implied by those requirements. The SRS for the architecture must define

the generic support requirements that are often hidden beneath the surface

of the specific requirements of the applications.

13



It should be recognized that it may not be practical to define a

single generic architecture for all of the applications. Some applica-

tions may be sufficiently different to justify a separate generic archi-

tecture or unique enough to be developed independently.

It is at this point that a decision should be made on the feasibil-

ity of a generic architecture for the applications under consideration.

That decision should be based on an analysis of the anticipated benefits

from its use on those applications.

6.2 Design

The design activity defines the components of each CSCI, the inter-

faces, and the control relationships among those components. The results

are contained in Software Design Documents (SODs) for each of the CSCIs.

The design provided by the generic architecture should be based on

an analysis of the requirements of each application that separates those

that might be met with reusable components from those which are unique to

the application. It should then isolate application-unique functions in

a limited number of non-reusable components or subunits that can be

replaced from one application to the next. Requirements for functions

that operate on different types of data may be met with generic compo-

nents. Components of the generic architecture that are likely to be

replaced by application-specific components should be designed to support

the later integration testing of the architecture.

The design process is likely to be iterative as tentative designs

for the architecture are proposed and revised in response to the reactions

of those designing the dependent applications.

Although the design of the generic architecture and its applica-

tions can proceed in parallel, the design of the architecture should be

completed first. It is then possible to describe the application designs

in the context provided by the design of the generic architecture. The

application designs should cover only those requirements that are not

(onvered by the architecture and should reference the design of the

architecture for the remainder.

14



6.3 Coding And Testing

The coding and most of the testing of the generic architecture

should take place before the coding and testing of the applications. Th:i

will allow the architecture to be used to support the testing of the

applications and will serve as an effective system test of the architec-

ture as well.

15



Section 7

ACQUISITION CONSIDERATIONS

To this point, this paper has focused on an understanding of generic

architectures and the technical issues surrounding the use of a generic

architecture on a project. However, there are other issues of acquisition

strategy that must be addressed in any serious attempt to implement a

generic architecture.

7.1 Project Domain

The first issue is the domain, in project terms, of the architec-

ture. It is not unusual to find that the applications of several differ-

ent projects will share the same operating environment. There may even

be strong requirements for the interoperability of the applications on

one project with the applications of the others. This would seem to be

the ideal situation for the use of a single generic architecture across

all of the projects.

However, there may be a number of problems with such an approach.

Organizational and funding responsibility for the different projects may

reside in distinctly separate organizations. The implementation schedules

for the projects may not coincide. Separate acquisition efforts may be

planned which could result in the selection of different contractors for

each of the projects. Finally, it may be that no single organization has

the background necessary to assume the responsibility for the development

of a generic architecture that would be used by all of the projects.

The domain of a generic architecture should be large enough to

provide adequate opportunities for the reuse of software components within

the domain. As long as that requirement is met, there are some advantages

to limiting the domain to a single, well-defined project. For example,

the schedule for that project would not be affected by delays experienced

on other projects. Control would remain within a single organization.

16



Issues with respect to the requirements or design would not have to be

negotiated among projects with potentially different approaches to those

matters.

Such a strategy could still be of benefit to other projects. The

development of a generic architecture for one project would provide a

prototype or model for the subsequent development of generic architecture,

on other projects. Each successive architecture would be a refinement of

the design and components used in earlier architectures. It is likely

that many of the components would be reused in any event.

7.2 Contractor Selection

Care must be taken to structure a competitive acquisition so that

it results in the selection of a contractor with the commitment and

qualifications necessary to successfully implement a generic architecture

for the project. Most of the benefits described earlier are important to

the government, but may not be as important to the contractor responsible

for the initial development effort. A contractor may be able to implement

the same applications at a competitive price without a generic architec-

ture using traditionc: programming practices and less qualified personnel.

The problems with such an approach might become apparent only in the

longer term operation and maintenance of the applications.

The key technical requirement to be included in the RFP is for exter-

sive reuse of software components across the applications of the project.

The contractor's proposal should describe how the reuse of software will

be maximized. Beyond a point, greater reuse of software components can

only be achieved through the use of a common high-level design, essential!.

the generic architecture approach. The proposal should also describe the

contractor's past experience with the development of reusable components

and provide evidence of a strong commitment to software reuse within the

contractor's organization.

17



7.3 Development

The results achieved through the use of a generic architecture are

directly related to the thoroughness of the requirements analysis and

design activities. Although these activities are critical to the success

of any software effort, they are particularly important when defining and

developing components that are intended for reuse across different appli-

cations. Typically, additional time spent in requirements analysis and

design avoids delays in the subsequent implementation of the software.

Unfortunately, pressure to show early results often leads to less

than adequate attention to these critical activities. The eadly schedul-

ing of requirements and design reviews leads to the submission of

documents that are often incomplete and poorly understood. This may be

followed by a cursory review of those documents that does not uncover

deficiencies in the statement of the requirements and conceptual problems

with the resulting design. Such practices will certainly reduce the

effectiveness of the generic architecture as a source of reusable

components for the applications.

The schedule for the requirements analysis and design activities

should be based on industry experience with projects of similar size and

complexity. Guidance may be found in sources such as Barry Boehm's

"Software Engineering Economics" [1]. Additional time should be allowed

for the editing of the requirements and design documents to meet military

standards and for the review of the delivered documents by the program

office.

The development of early prototypes of the architecture, and at

least some of the applications, may absorb much of the pressure to show

early results. The prototypes can be used to provide the users with a

tentative response to their requirements. As such, they become vehicles

for the refinement of the requirements and the development of an

appreciation of critical design issues.

LI] Barry W. Boehm, Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, N.3., 1981.

18

I



Both the prototypes and the resulting requirements documents shoui'-

give particular attention to those areas which experience has shown have

the greatest potential for the types of reusable components provided by

generic architecture. These include:

0 The interactive interface with the user,

0 Reports produced by the applications,

0 Data base requirements, and

* Communications standards and protocols.

The interactive interface should be specified in sufficient detail

to completely support the development of user manuals and final qualifi

tion tests. Report specifications should be adequate to support a

oetailed review by the intended users of the applications. The data base

requirements should be sufficiently precise and detailed to allow users

to verify the definitions of all data elements and the logical relation-

ships among those elements. The communications standards and protocols

should address in detail the issues of interoperability among the

applications and with other systems.

19



Section 8

SUMMARY AND CONCLUSIONS

The reuse of software components improves software development

productivity by reducing the amount of program code that must be developed

and maintained and by capturing expertise that might not be readily avail-

able on a project. The generic architecture approach to reusable software

allows a significantly greater share of the code to be reused in applica-

tions which can share a common high-level design.

Generic architectures compliment the use of libraries of reusable

components by expanding the use of reusable components to parts of an

application which have traditionally been considered too design dependent

for reusable software. Most of the components available from libraries

are designed to stand alone while those developed for a generic architec-

ture often require the services of other components developed for the

architecture. The ability to achieve high levels of software reuse

depends to some degree on limiting the scope of a generic architecture to

the specific applications planned for that architecture.

The Ada language is well suited to the development of reusable

components and generic architectures. Ada packages provide a well defined

interface for a component and encapsulate the details of the implementa-

tion. Generic and separate subunit features of the language allow the

operations of a component to be modified without changing the code of the

component itself. The language supports an object-oriented development

process which provides a logical and efficient basis for organizing

operations and data into reusable components.

The benefits of a generic architecture include a significant reduc-

tion in software development and maintenance costs, greater reliability

of the resulting software, improved interoperability among applications

based on the same architecture, a common "look and feel" to the interface

of those applications, and greater adaptability to changing requirements,

environments, and technology.

20



The development of a project-oriented generic architecture and its

applications fits well into the DOD-STD-2167A defined development

process. The requirements for the architecture must be derived from the

requirements for the applications supported by the architecture. The

architecture may be designed in parallel with its applications, but its

implementation should precede that of the applications so that it is

available to supply components required for the integration and testing

of the applications.

Several issues of acquisition strategy need to be addressed in the

development of a generic architecture. The domain of the architecture

needs to be broad enough to provide adequate opportunities for the reuse

of the components provided by the architecture. It should be narrow

enough to allow it to be successful on at least one project. The contr,.c:

tor selection process should be structured to ensure that the contractor

is sufficiently qualified and committed to meet the software reuse goals

of the project. The requirements analysis and design phases of the work

must be carefully monitored to ensure that the results will be adequate

to support the successful development of a generic architecture.

21



Section 9

FURTHER READING

The material in this paper is based on a study done by SofTech for

the U.S. Army CECOM titled "Generic Architecture Study" dated January 22,

1988. Copies may be obtained from the Center for Software Engineering.

Another paper based on the study and titled "The Generic Architecture

Approach to Reusable Software" was presented at the Sixth National

Conference on Ada Technology and is contained in the Proceedings, pages

390-394 (March 1988).

An excellent introduction to the use of Ada in object-oriented

development is contained in an article by Grady Booch titled "Object-

Oriented Development" that was published in the February 1986 issue of

the IEEE Transactions on Software Engineering (volume SE-12, number 2,

page 211).

An account of the use of this approach on a major project is con-

tained in the "Phase I Final Technical Report for the Mobile Command and

Control System (MCCS) Mission Support Segment (MSS)" that was prepared by

SoTech for the U.S. Army (CECOM) and the U.S. Air Force Space Command/

SWSC, dated February 28, 1989. It is also available at the CECOM Center

for Software Engineering.

22


